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Abstract. Program inversion has many applications such as in the im-
plementation of serialization/deserialization and in providing support for
redo/undo, and has been studied by many researchers. However, little
attention has been paid to two problems: how to characterize programs
that are easy or hard to invert and whether, for each class of programs,
efficient inverses can be obtained. In this paper, we propose an inver-
sion framework that we call grammar-based inversion, where a program
is associated with an unambiguous grammar describing the range of the
program. The complexity of the grammar indicates how hard it is to
invert the program, while the complexity is related to how efficient an
inverse can be obtained.

1 Introduction

The problem of program inversion — deriving a program computing f−1 from a
program computing f , has been studied over decades [1,7,8,11,15–17,25,27,30]
and has many applications including providing support for undo/redo, deriving
a deserializing program from a serializing program or vice versa, and serving as
an auxiliary phase in other program transformations, such as bidirectionaliza-
tion [21].

Every method of program inversion faces two challenges: how to handle a
wide class of programs, and how to derive efficient inverses for them. Although
it is possible to invert all the programs based on symbolic computation with
search (e.g., [1]) as in logic programs, an inverse obtained this way could per-
form much worse than a handwritten inverse. Thus, an inversion method should
restrict itself to a certain subclass of programs for which efficient inverses can be
derived. It is certainly desirable for an inverter to handle a wider class of pro-
grams. Although often overlooked, it is also desirable for the criteria under which
a program can be inverted by a particular inverter to be perspicuously specified.
This is especially important when program inversion is used by other program
transformations, and we have to convert the program into a form acceptable by
the inverter.



Two questions arise naturally: For what kind of programs, how efficient in-
verse programs can be obtained, and how difficult is the inversion process? Those
who have worked on program inversion would agree that among the following
programs, double is the easiest to invert, followed by snoc, and reverse is the
most difficult of the three.

double(x) = case x of
Z → Z
S(y) → S(S(double(y))),

snoc(x, b) = case x of
[ ] → [b]
a : y → a : snoc(y, b),

reverse(x) = rev(x, [ ])
rev(x, r) = case x of

[ ] → r
a : y → rev(y, a : r).

A particular method may be able to handle some of these while it may fail on
the others. It has not been clarified, however, whether this is merely due to the
inadequacy of the method, or whether some problems are intrinsically hard. To
the best of the authors’ knowledge, there have been no formal classifications of
invertible programs so far.

We propose a framework toward solving the classification problem, that we
call grammar-based inversion in this paper, which is an adaptation of Yellin’s
inversion [30] for first-order functional programs. Our inversion is based on the
correspondence between two proofs: a proof of ∃x. f(x) = v for function f , and
a proof of v ∈ Range(f) where Range(f) is described by a grammar. More con-
cretely, as in Fig. 1, our inversion uses bijection between a proof for evaluation
of a program (an evaluation tree) and a proof for production of a grammar (a
production tree). From an output of the program (function), a production tree
is obtained by parsing with the grammar. According to the correspondence, the
production tree is then converted to an evaluation tree of the program. We also
reconstruct the environment used in the evaluation with the evaluation tree,
from which we recover the arguments to which the function was applied. The
class of programs that can be inverted by the proposed approach is characterized
by the complexity of grammars, as seen in Fig. 2. For example, to invert double
and snoc, regular tree grammars (RTG) [6] is sufficient. To invert reverse, how-
ever, we need grammar beyond regular, such as (inside-out) context-free tree
grammar [9]. While a more general grammar covers more programs, it also im-
plies higher worst-case time complexity of parsing and, therefore, a less-efficient
inverse. Grammar-based inversion has three main characteristics:

– A program is associated with a grammar, whose complexity characterizes
how difficult it is to invert the program.

– The derived inverse is efficiently evaluated by parsing the output with respect
to the grammar.

– The correctness of the inversion is clearly expressed by bijection between
two proofs.

We present grammar-based inversion with RTG as a case study in this paper.
Invertible programs of grammar-based inversion using RTG cover double and
snoc but not reverse. However, it will be explained in Sect. 5 that grammar-based
inversion, being an extensible framework, can handle functions like reverse.
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Fig. 1. Idea underlying our inversion: Inversion problem can be rephrased as “given
expression e and value v, find environment θ under which e evaluates to v” (Sect. 2).
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Fig. 2. Classification includes double, snoc, and reverse.

The main purpose of our work is not to invert as many programs as possible,
or to obtain the most efficient inverses for certain programs. Instead, we aim at
classifying programs by grammars that determine the worst-case time complexity
of the derived inverses. Also note that we classify programs, not problems. That
is, classification by grammar-based inversion is rather syntactic, not semantic.

This paper is organized as follows. Section 2 defines a small core language that
we base our discussion on. Section 3 explains an informal account of grammar-
based inversion using a small example. Section 4 presents a case study of grammar-
based inversion using RTG in detail. Section 5 discusses grammar-based inversion
in general. Section 6 describes an experiment that demonstrated the inverses ob-
tained with our method are sufficiently efficient. Section 7 discusses related work.
Section 8 concludes the paper and discusses some future directions.

Preliminaries. For function f , function g is called a left inverse of f if and only
if g(f(x)) = x for all x in the domain of f . For function f , function g is a right
inverse of f if and only if f(g(y)) = y for all y in the range of f . Both inverses
are discussed in this paper. We only consider left/right inverses that are defined
precisely on the range of f . Thus, the left inverse is always unique for injective
function f . Unless otherwise noted, “inverse” and “invertible” in this paper refer
to left inverses.

2 Core Language

To begin with, let us define a small core language to describe the programs to be
inverted. The language is merely a first-order functional programming language
with call-by-value semantics except for its slightly unusual evaluation rules.



prog ::= decl1 . . . decln
decl ::= f(x1, . . . , xn) = e
e ::= x | C(e1, . . . , en) | f(e1, . . . , en) | case x of {p1 → e1; . . . ; pn → en}
p ::= x | C(p1, . . . , pn)

Fig. 3. Syntax of core language.

Let Σ be a set of constructors each associated with an arity. The set of
values are trees TΣ , inductively defined by: Let C ∈ Σ be an n-ary constructor,
C(t1, . . . , tn) ∈ TΣ if t1, . . . , tn ∈ TΣ . Note that the definition implies that C() for
nullary C is always in TΣ . For example, given an appropriate Σ, Z() and S(Z())
are both trees. For brevity, tree C() is written as C, and trees Cons(x, y) and Nil
are written as x : y and [ ], respectively. In the later discussion, we assume set
Σ containing all constructors in the examples.

A program is a set of definitions of first-order functions that take a tuple of
values and return a value. The syntax of the language is formally described in
Fig. 3. To simplify the presentation, the language does not have a let construct,
and case always matches a variable against patterns. The restrictions do not
affect the expressiveness of the language. The set of free variables in expression
e is denoted by vars(e). For simplicity, we assume that the variables in p of
case-alternative p → e are always fresh.

We call a program nonerasing if every variable in the LHS of a declaration
also occurs in the corresponding RHS, and every variable in pattern p of case-
alternative p → e occurs in e. If no variable in a program occurs more than once
in the RHS, we call the program affine.

Substitution θ is a mapping from a finite domain of variables to values. Given
pattern p, the value obtained by substituting variables in the domain of θ for
corresponding values is denoted by pθ. For set of variables X and substitution θ,
domain restriction operator −|− is defined by θ|X = {x 7→ θ(x) | x ∈ X}. Partial
operator ] merges two substitutions if their domains are disjoint.

The semantics of the language is defined by the big-step call-by-value seman-
tics given in Fig. 4. The semantics is rather standard, except that we eagerly
remove unused variables in the environment by domain restriction, which will
come in handy in our inversion later. To evaluate expression e, the rules in Fig. 4
are repeatedly applied and an evaluation tree (a derivation tree/a proof tree) is
constructed. Evaluation tree E can be seen as a proof that e evaluates to some v
under environment θ, which we denote by E : θ ` e ↓ v. For simplicity, patterns
in case are assumed to be non-overlapping, i.e., there is at most one pattern that
matches any given input. Note that, given e and θ, evaluation tree E : θ ` e ↓ v
is unique if it exists.

3 Grammar-Based Inversion: An Overview

Before going into details, we briefly overview grammar-based inversion.



Var:
θ(x) = v
θ ` x ↓ v

Con:
{θ|vars(ei) ` ei ↓ vi}i∈{1,...,n}

θ ` C(e1, . . . , en) ↓ C(v1, . . . , vn)

Fun:

{θ|vars(ei) ` ei ↓ vi}i∈{1,...,n}
{xi 7→ vi | 1 ≤ i ≤ n}|vars(e′) ` e′ ↓ v

θ ` f(e1, . . . , en) ↓ v
(∃f(x1, . . . , xn) = e′)

Case:
∃σ, i. piσ = θ(x) (θ ] σ)|vars(ei) ` ei ↓ v

θ ` case x of {p1 → e1; . . . ; pn → en} ↓ v

Fig. 4. Big-step call-by-value semantics of core language.
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Fig. 5. An overview of grammar-based inversion.

3.1 Basic Idea Underlying Grammar-Based Inversion

Recall that, in Sect. 2, a program defines the semantics of expressions. Therefore,
we can reduce program inversion to expression inversion as follows.

Problem (Expression Inversion). Given expression e in a program and value
v, find environment (substitution) θ such that θ ` e ↓ v.

Given function f , it is reasonable to expect that any notion of a “correct” in-
version should cover the entire range of f . That is, it should be complete in
the sense that for all v, if there exists θ such that θ ` f(x) ↓ v, we are able to
recover θ. This is apparently hard and inefficient for general f . Thus, we restrict
ourselves to a method that is only complete for a chosen class of programs.

The goal of grammar-based inversion is to reconstruct the evaluation tree of
θ ` e ↓ v, given e and v. This is as hard as only constructing the environment θ.
Reconstruction is carried out in two steps: we first construct an approximation
of evaluation by building a production tree with respect to a grammar induced
by the program, then attempt to reconstruct environment θ from the production
tree. Note that the grammar also approximates the range of the program. There
is an overview of grammar-based inversion in Fig. 5.

3.2 Inverting snoc Step by Step

We demonstrate grammar-based inversion with the example of snoc in Sect. 1.
The first step is to construct an unambiguous grammar whose production tree



approximates an evaluation tree of snoc. One would prefer to construct a gram-
mar belonging to a lower complexity class because the complexity is related to
the efficiency of the derived inverse. It suffices to use a regular tree grammar
(RTG) [6] for snoc. From a program, we derive an RTG such that:

– Each nonterminal Ee corresponds to expression e in the program.
– If expression e evaluates to e′, we add production rule Ee → Ee′ .
– Constructors are converted to terminal symbols denoting themselves.
– Nonterminal Ex for variable-use expression x has production rule Ex → >,

where > is a special symbol that will be explained later.

The conversion will be formalized in the next section. For example, snoc is
converted to the (unambiguous) grammar below. Here, case x of {. . .} is an
abbreviation for case x of {[ ] → b : [ ]; a : y → a : snoc(y, b)}, the unique RHS
of snoc, the function we intend to invert.

Ecase x of {...} → Eb:[ ]

Ecase x of {...} → Ea:snoc(y,b)

Eb:[ ] → Eb : E[ ]

Ea:snoc(y,b) → Ea : Esnoc(y,b)

Esnoc(y,b) → Ecase x of {...}
Ea → >

Eb → >
E[ ] → [ ]
Ey → >

For the second step, given an output supposedly produced by snoc, we first
try to parse it against the grammar, allowing > to match any value. For ex-
ample, the production tree of 1 : [ ], or the derivation/proof tree of production
Ecase x of {...} →∗ 1 : [ ], is:

> →∗ 1
Eb →∗ 1 E[ ] →∗ [ ]

Eb:[ ] →∗ 1 : [ ]
Ecase x of {...} →∗ 1 : [ ]

.

From the production tree, we can reconstruct the following evaluation tree of
θ ` snoc(x, b) ↓ 1 : [ ]:

{b 7→ 1}(b) = 1
{b 7→ 1} ` b ↓ 1 ∅ ` [ ] ↓ [ ]
{b 7→ 1} ` [ ] → b : [ ] ↓ 1 : [ ] {b 7→ 1, x 7→ [ ]}(x) = [ ]

{b 7→ 1, x 7→ [ ]} ` case x of {[ ] → b : [ ]; a : y → a : snoc(y, b)} ↓ 1 : [ ]
.

Each node of the obtained evaluation tree corresponds to a node in the produc-
tion tree. > matches 1 in the topmost leaf of the production tree; therefore, the
value of b is known to be 1 in the corresponding node in the evaluation tree. By
completing the evaluation tree we have also recovered the initial environment,
{b 7→ 1, x 7→ [ ]}, the result of inversion.

This reconstruction of evaluation trees from production trees is done by func-
tion reconst in Sect. 4. With reconst, our generated inverse program snoc−1 has
the form:

snoc−1(v) = (θ(x), θ(b))
where (E : θ ` snoc(x, b) ↓ v) = reconst(P)

P is a production tree for Ecase x of {...} →∗ v.



Any: > →∗ v
Unit:

E1 →∗ v
E →∗ v

(E → E1 ∈ R)

Con:
{Ei →∗ vi}1≤i≤n

E →∗ C(v1, . . . , vn)
(E → C(E1, . . . , En) ∈ R)

Fig. 6. Semantics of RTG (Σ, N, R).

Since the cost of parsing for RTGs is linear, the derived snoc−1 runs in time
that is linear to its input. It might seem that snoc−1 entails a large overhead. The
experiment discussed in Sect. 6 demonstrates that the overhead is acceptable.

4 Grammar-based Inversion by Regular Tree Grammar

This section describes a case study of grammar-based inversion when we use
RTG [6], one of the simplest tree grammars, which is relatively well understood;
e.g., parsing for RTG can be efficiently performed done tree automaton and its
variations [4, 6, 13,24].

Definition 1 (RTG). An RTG is a triple (Σ, N,R), where Σ is a set of con-
structors (terminals), N is a set of nonterminals, and R is a set of production
rules in which each rule has either of the forms E → E1 or E → C(E1, . . . , En)
with E,E1, . . . , En ∈ N and C ∈ Σ of arity n.

Unlike conventional presentation, we define the semantics of a grammar in a
“big-step” style as seen in Fig. 6. The rules in Fig. 6 are defined so that E →∗ v
means that value v is a normal form of E taking production rules to be rewriting
rules. We assume that there exists special nonterminal > that can generate any
value, and we treat > →∗ v as an axiom. Also note the above definition contains
no start symbol. We sometimes write P : E →∗ v if P is a production tree (a
derivation tree/a proof tree) for E →∗ v. We call a grammar ambiguous if, for
some E and v, there is more than one production tree for E →∗ v. Otherwise, the
grammar is unambiguous. Note that checking whether an RTG is ambiguous or
not is known to be decidable [6].

4.1 Approximation of Evaluation Structure

We construct an RTG from a program so that each production rule in the gram-
mar corresponds to an evaluation step of the program. The basic idea behind
the construction has been explained in Sect. 3, and the formal rules are given in
Fig. 7. The procedure itself is not new; it is almost the same as the type inference
of regular expression types [19], and similar techniques have been adopted in the
range inference of tree transducers (e.g., [10]).

To clarify the correspondence between a program and its derived grammar,
we define a transformation, approx, from a proof of θ ` e ↓ v to a proof of Ee →∗ v
in Fig. 8. Function approx defines the node-by-node correspondence between the
two proofs. Formally, we have the following theorem.



x −→ Ex → >
C(e1, . . . , en) −→ EC(e1,...,en) → C(Ee1 , . . . , Een)
f(e1, . . . , en) −→ Ef(e1,...,en) → Ee′ where ∃(f(. . .) = e′)

case x of {p1 → e1; . . . ; pn → en} −→

Ecase x of {p1→e1;...;pn→en} → Ee1

...
Ecase x of {p1→e1;...;pn→en} → Een


Fig. 7. Construction of productions rules of RTG.

approx

(
θ(x) = v
θ ` x ↓ v

)
= > →∗ v

Ex →∗ v

approx

(
{Ei : θ|vars(ei) ` ei ↓ vi}1≤i≤n

θ ` C(e1, . . . , en) ↓ C(v1, . . . , vn)

)
=

{approx(Ei)}1≤i≤n

EC(e1,...,en) →∗ C(v1, . . . , vn)

approx

(
{ : θ|vars(ei) ` ei ↓ vi}1≤i≤n

E : {xi 7→ vi | 1 ≤ i ≤ n} ` e ↓ v

θ ` f(e1, . . . , en) ↓ v

)
=

approx(E)
Ef(e1,...,en) →∗ v where ∃(f(x1, . . . , xn) = e)

approx

(
∃σ, i. piσ = θ(x) Ei : (θ ] σ)|vars(ei) ` ei ↓ v

θ ` case x of {p1 → e1; . . . ; pn → en} ↓ v

)
=

approx(Ei)
Ecase x of {p1→e1;...;pn→en} →∗ v

Fig. 8. Definition of approx.

Theorem 1 (Approximation). Given evaluation tree E : θ ` e ↓ v, P =
approx(E) is a production tree for Ee →∗ v, i.e., P : Ee →∗ v. ut

Since approx discards the evaluation trees of arguments at the third branch,
approx is neither surjective nor injective: there may be production tree P : Ee →∗
v that does not correspond to any evaluation tree, i.e., ∀E : θ ` e ↓ v. P 6=
approx(E), even if e evaluates to v under some environment. For example, con-
sider the program

h(r) = add(Z, r)
add(x, r) = case x of {Z → r; S(y) → S(add(y, r))}.

Since h is injective, there is only one evaluation tree for {r 7→ S(Z)} ` add(Z, r) ↓
S(Z). From h we obtain the following grammar:

Eadd(Z,r) → Ecase x of {...}
Ecase x of {...} → Er

Ecase x of {...} → S(Eadd(y,r))

Eadd(y,r) → Ecase x of {...}
EZ → Z
Er → >

Ey → >.



The reader may have found that there are two production trees for Eadd(Z,r) →∗
S(Z), and only one of these corresponds to the evaluation tree.

To deal with this situation, we propose two sufficient conditions to guarantee
bijection between evaluation and production trees:

Condition (Suff-Left): The program is nonerasing and the derived grammar
is unambiguous.

Condition (Suff-Right): The program is affine and treeless (i.e., every argu-
ment of a function call must be a variable) [29].

Roughly speaking, (Suff-Left) guarantees the injectivity of a program, while
(Suff-Right) guarantees its surjectivity with respect to the range described by
the grammar. With (Suff-Left), for v of E : θ ` e ↓ v, any P : Ee →∗ v must
equal approx(E) since the grammar is unambiguous. With (Suff-Right), every
P : Ee →∗ v must have a unique corresponding evaluation tree, E : θ ` e ↓ v (a
direct consequence of [21]). As will be seen later, (Suff-Left) is used to obtain
left inverses, and (Suff-Right) is used to obtain right inverses.

4.2 Reconstructing Evaluation Trees

Our aim now is to construct an evaluation tree from a production tree, i.e., to
construct the inverse of approx. Since the RHSs of approx are disjoint, inversion
of approx is done in a straightforward way if we can recover the information lost
in approx — the evaluation trees of arguments to each function call f(e1, . . . , en).
In other words, in reconstructing the evaluation tree of f(e1, . . . , en) ↓ v where
f is defined by f(x1, . . . , xn) = e, we must recover Ei of Ei : θi ` ei ↓ θ(xi)
from E : θ ` e ↓ v. Luckily, this can be done. Assume that each ei respectively
evaluates to vi. The values of vi have been recovered by vi = θ(xi). Thus,
evaluation tree Ei : θi ` ei ↓ vi is obtained by recursively rebuilding production
tree Pi : Eei →∗ vi.

Formally, reconst defined in Fig. 9 reconstructs an evaluation tree from a
production tree.5 Function reconst is an inverse of approx obtained by swapping
LHSs with RHSs except that invE recovers the lost information of approx, as
explained in the previous paragraph. Operator ] is extended to substitutions
with overlapping domains: {x 7→ 1} ] {x 7→ 1} yields {x 7→ 1}, while {x 7→ 1} ]
{x 7→ 2} fails. Note that reconst is a partial function; e.g., ] may fail.

Procedure invE in Fig. 9 appears to be nondeterministic since there might
be more than one production tree. With constraints (Suff-Left) and (Suff-
Right), we ensure that there is at most one production tree and thus invE is
deterministic.

The following properties relate reconst and approx:
5 For simplicity, we assume that there is at most one possibility to choose pi at the

definition of reconst for case; e.g., we exclude case x of {Z → Z; S(y) → Z}. Note
that a program containing such a case-expression does not satisfy (Suff-Left). To
invert such programs under (Suff-Right), it is sufficient to construct a nonterminal
for each expression occurrence instead of the expression itself in constructing RTG.



reconst

(
> →∗ v
Ex →∗ v

)
=

{x 7→ v}(x) = v
{x 7→ v} ` x ↓ v

reconst

(
{Pi}1≤i≤n

EC(e1,...,en) →∗ C(v1, . . . , vn)

)
=

{Ei : θi ` ei ↓ vi}1≤i≤n

θ1 ] · · · ] θn ` C(e1, . . . , en) ↓ C(v1, . . . , vn)
where (Ei : θi ` ei ↓vi) = reconst(Pi)

reconst

(
P : Ee →∗ v

Ef(e1,...,en) →∗ v

)
=

{Ei : θi ` ei ↓ v}1≤i≤n E : θ ` e ↓ v

θ1 ] · · · ] θn ` f(e1, . . . , en) →∗ v
where

∃f(x1, . . . , xn) = e.
(E : θ ` e ↓ v) = reconst(P)
(Ei : θi ` ei ↓ v) = invE(ei, θ(xi))

reconst

(
Pi : Eei →∗ v

Ecase x of {p1→e1;...;pn→en} →∗ v

)
=

∃σ, i. piσ = θ(x) E : η ` ei ↓ v

θ ` case x of {p1 → e1; . . . ; pn → en} ↓ v
where

(Ei : η ` ei ↓ v) = reconst(Pi)
θ = η ] {x 7→ piη}
σ = η|vars(pi)

invE(e, v) = reconst(P) where P is a production tree of Ee →∗ v.

Fig. 9. Definition of reconst.

Theorem 2. If reconst(P) = (E : θ ` e ↓ v), then E is a proof of θ ` e ↓ v.

Proof Sketch. Induction on P. ut

Theorem 3. If E = reconst(P), then approx(E) = P holds.

Proof Sketch. Induction on P. ut

Lemma 1 (Correctness (Left)). Assume that a program satisfies (Suff-
Left). Let e be an expression and v a value such that ∃θ. θ ` e ↓ v. Then,
for production tree P : Ee →∗ v, reconst(P) = (E : θ ` e ↓ v) holds.

Proof Sketch. In this case, P = approx(E : θ ` e ↓ v) holds for some E because of
the unambiguity of the grammar. Then, by induction on the structure of E , we
prove reconst(approx(E)) = E , which means reconst(P) terminates and results in
E . The nonerasing property ensures that for each step of reconst, θ of θ ` e ↓ v
is defined for any variable occurring in e. ut

Lemma 2 (Correctness (Right)). Under (Suff-Right), for any production
tree P : Ee →∗ v, reconst(P) = E : θ ` e ↓ v holds.

Proof Sketch. In this case, since invE(e, v) is always called with e = x, the call
terminates and returns an evaluation tree of form {x 7→ v} ` x ↓ v. Thus,
we conclude that under (Suff-Right), reconst always terminates. The rest of
the proof is straightforward by induction on P. Note that nonerasure does not
matter here because we can assign any value to a variable that does not affect
the output; leaving it as undefined is a correct solution. ut



reverse ′(xs) = extract(call(shape(xs)))
shape(xs) = case xs of {[ ] → Pair(Z, [ ]); x : xs ′ → inc(shape(xs ′), x)}
inc(r, x) = case r of {Pair(n, xs) → Pair(S(n), x : xs)}
call(r) = case r of {Pair(n, xs) → revTABA(n, xs)}
extract(r) = case r of {Pair(xs, [ ]) → xs}
revTABA(n, xs) = case n of {Z → Pair(xs, [ ]); S(m) → shift(revTABA(m, xs))}
shift(r) = case r of {Pair(x : xs, ys) → Pair(xs, x : ys)}

Fig. 10. Variant of reverse that is invertible with RTG.

From the lemmas above we can prove the following theorem.

Theorem 4 (Correctness of Grammar-based Inversion). For a program
with definition f(x1, . . . , xn) = e, the program f−1 defined by

f−1(v) = (θ(x1), . . . , θ(xn)) where (E : θ ` e ↓ v) = invE(e, v)

satisfies the following two properties.

1. f−1 is a left inverse of f , if (Suff-Left) holds, and
2. f−1 is a right inverse of f , if (Suff-Right) holds. ut

Note that double and snoc satisfy both (Suff-Left) and (Suff-Right),
while reverse satisfies neither of them. Program runlength used in the experi-
ment to be discussed in Sect. 6 only satisfies (Suff-Left).

Recall that in Sect. 1 we stated that we classify invertible programs instead
of problems. We can give another definition of reverse, as shown in Fig. 10, from
which the derived grammar is unambiguous. More precisely, reverse ′ satisfies
(Suff-Left) but not (Suff-Right). The definition of reverse ′, while appearing
tricky, is nothing but a nonerasing version of IO-swapped reverse [22]. Note that
both reverse and reverse ′ run in time linear to the input size.

4.3 Properties

We discuss some properties of the inverses derived using grammar-based inver-
sion with RTG.

Correspondence to Post Condition. Post conditions play important roles in
many program inversion methods [8,11,16,17]. Post condition P of e, which we
write as e{P}, is a predicate on the state (i.e., values of all free variables) that
is supposed to be true after e is executed. A simple post condition is a predicate
on the value of e. Given a program, one may assign, for each function f , a post
condition, postf . The assignment is valid if we can assign a valid post condition
to each sub-expression in the program in the way defined below:

Definition 2 (Simple Post Conditions). Given a program and a post con-
dition assignment for each function in the program, an assignment of post con-
ditions to all sub-expressions is valid if



– every variable x is given a post condition, P ( ) = True;
– each function call f(. . .) is assigned the post condition, postf ;
– C(e1{P1}, . . . , en{Pn}){P} is valid if ∀i. Pi(vi) ⇒ P (C(v1, . . . , vn));
– case of {p1 → e1{P1}; . . . ; pn → en{Pn}}{P} is valid if ∃i. Pi(v) ⇒ P (v);
– in a definition, f(. . .) = e{P}, the right-hand side is assigned a post condi-

tion satisfying P (v) ⇒ postf (v).

Many approaches to program inversion rely on disjoint post conditions for
each case expression. The expression case x of {p1 → e1{P1}; p2 → e2{P2}},
where P1 and P2 are disjoint, is inverted to a program that, given output v, tests
which of P1(v) or P2(v) holds and performs, respectively, the inverse of e1 or e2.
For non-simple post conditions, it is harder to check the validity of assignment
and to test P (v) in executing inverses. Human-assigned post conditions [8,11,17]
without validity checks may be more expressive. In contrast, the post conditions
in Glück and Kawabe [16] that support inference are basically simple. Note
that, in functional language, post conditions can be seen as types satisfying the
preservation (subject reduction) law.

The following theorem states that grammar-based inversion using RTG is
equivalent to inversion using simple post conditions:

Theorem 5. The RTG obtained from a program is unambiguous if and only if
there exists a valid assignment of simple post conditions such that every case-
expression in the program has an assignment

case x of {p1 → e1{P1}; . . . ; pn → en{Pn}}

where P1. . .Pn are disjoint. That is, for any v, there is at most one Pi such that
Pi(v) = True.

Proof Sketch. In this case, for e{P}, we can prove (θ ` e ↓ v) ⇒ P (v). Then, the
“if” part is proved by showing the contraposition: if a grammar is ambiguous,
then there exists such a case-expression. For grammars obtained with Fig. 7, we
can prove that if a grammar is ambiguous, there exists E such that E → E1 →∗ v
and E → E2 →∗ v for distinct E1 and E2, and such E must correspond to
some case-expression. The “only if” part is proved by taking the P of e{P} as
P (v) ≡ (∃P. P : Ee →∗ v). ut

It is thus a corollary that to invert more functions than those with grammar-
based inversion with RTG, we must use more expressive post conditions that are
harder to check, to infer, or to invert.

Efficiency. For RTG, the construction of a production tree for E →∗ v takes
time at worst proportional to the size of v [6]. It is remarkable that, thus, if
a program is nonerasing, affine, and treeless, the derived inverse runs in O(n),
where n is the size of an input of the inverse. As a result, we can obtain linear
time inverses for double and snoc. Being affine ensures that the domains of
environments merged by ] are always disjoint; thus, we do not need to spend



time checking whether overlapping variables are equal. Being treeless means that
arguments ei of each function call f(e1, . . . , en) are merely variables. Thus, all
production tree constructions at invE(x, v) immediately match > with the given
value in O(1) time. In more general cases, the construction of production tree
P : Ee →∗ v at invE(e, v) runs in time between O(|P|) and O(|v|), where |P| and
|v| are the sizes of P and v, depending on the parsing method. For example,
using guided tree automata for parsing [4], we can obtain a linear time inverse
for reverse ′ in Fig. 10 because the lower complexity bound is achieved for each
call of invE in the inverse. Generally, a derived inverse runs at worst in time that
is proportional to the total size of “intermediate data” plus “duplicated data”
in addition to the size of the output value. Note that a derived right inverse
always takes time at worst linear to the size of its input because (Suff-Right)
requires a program to be affine and treeless.

5 Grammar-based Inversion in General

So far, we have discussed grammar-based inversion by RTG as a case study. In
this section, we will give more general study on grammar-based inversion.

5.1 More Fine-Grained Classification

Recall that double and snoc are invertible by RTG. However, the difficulties of
inversion differ in the two programs; double is easier to invert than snoc. Extra
conditions for a grammar achieve more fine-grained classification. For example,
the grammar of double is top-down deterministic (for E →∗ C(E1, . . . , En), the
tuple (E1, . . . , En) is unique to E and C) while that of snoc is not. If a top-
down deterministic grammar has no rule E → E1 for E that has more than one
production rule, swapping LHSs with RHSs results in a deterministic inverse.
Even if such production rules exist, additional checking of the root of a value at
case is sufficient to obtain a deterministic inverse.

5.2 Predefined Inverses as Axioms

Small parts of a program are sometimes very difficult to invert because they
use mathematical properties, such as multiplication of prime numbers. In this
case, treating them as language constructs with predefined inverses helps us to
invert programs that contains them. For example, consider mulPrime(x1, x2)
that multiplies two primes x1 and x2 if x1 ≤ x2. The semantics of function call
mulPrime(e1, e2) is defined by the predefined semantics [[mulPrime]] as

{θ ` ei ↓ vi}i=1,2 [[mulPrime]](v1, v2) = v v1 ≤ v2

θ ` mulPrime(e1, e2) ↓ v
.

For the function, we prepare a special production rule, EmulPrime(e1,e2) → Nat ,
where Nat represents natural numbers, and then the corresponding reconst is
defined in a straightforward way by using its predefined inverse [[mulPrime]]−1.



5.3 More Expressive Grammars

Using more expressive grammars enables us to invert more programs.
Inside-out (IO) context-free tree grammar (CFTG) [9] enables us to inves-

tigate accumulation parameters (parameters that are never pattern-matched in
evaluation) in parsing. For example, the following IO CFTG can be obtained for
reverse.

Erev(x,[ ]) → Ecase x of {...}([ ])
Ecase x of {...}(r) → r

Ecase x of {...}(r) → Erev(x,a:r)(r)
Erev(x,a:r)(r) → Ecase x of {...}(a : r)

In an RTG, non-terminals do not have parameters/arguments. Thus, as in Sect. 4,
when we construct an RTG approximation of a program, we discard the argu-
ments of functions. In an IO CFTG, non-terminals may have “accumulation
parameters”. Thus, we can similarly construct an IO-CFTG approximation of
a program by discarding the arguments that are not accumulation parameters.
Note that since approx changes according to the class of grammar, so does its
inverse reconst. The change in reconst is straightforward in IO CFTG; simi-
lar to reconst for RTG, we re-parse to recover discarded evaluation trees of
expressions occurring in non-accumulation parameters. Like (Suff-Left), left-
invertible programs are characterized by the unambiguity of the grammar, and
like (Suff-Right), right-invertible programs are characterized by the syntactic
condition that ensures that every production tree has a unique corresponding
evaluation tree. Note that the class of right-invertible programs by IO CFTG con-
tains the known class of tree transformations called deterministic linear macro
tree transducers [10]. IO CFTG corresponds to the post conditions that can
contain the variables of accumulation parameters.

For IO CFTG, it is known that checking whether or not E →∗ v holds takes
time polynomial to the size of v [3]. Unfortunately, there has been little dis-
cussion on “parsing” of IO CFTG because people have not found a use for the
production trees. However, we believe that a variant of the CYK parser would
yield polynomial-time parsing. Note that, similar to CFG in which a nonter-
minal generates a string and a string of length n contains n2 substrings, in IO
CFTG, a k-ary nonterminal generates a k-hole context (a value containing k
holes to be filled) and a value of size n contains nk+1 k-hole contexts. Thus, we
believe memoization as in CYK parsing should be applicable. For the example
of reverse, we can obtain a linear-time inverse by using deterministic bottom-up
push-down tree automata [28]. We also believe that it is possible to use a more
expressive grammar, e.g., supporting equality check or synchronous production
as in the tupled [20] function. For the string case, these features are adopted
without violating the polynomial-time-parisible property [5]. Note that, even if
the derived RTG is unambiguous, when a derived IO CFTG is can be parsed in
linear time, the inverse derived by IO CFTG is sometimes more efficient than
that derived by RTG. An inverse derived by IO CFTG calls invE no more than
that derived by RTG; the inverse does not call invE for arguments occurring at
accumulation-parameter positions of a function call because the evaluation has
already been captured by the IO CFTG.



Note that ambiguity check for a grammar beyond regular, such as IO CFTG,
is usually undecidable [18]. However, some automated systems or some restricted
forms of programs can still guarantee the unambiguity of an expressive grammar
in some cases. Investigations into appropriate ways to define “some” programs
for which the ambiguity check of derived grammars are decidable would be im-
portant in future work.

6 Experiment

This section reports our automatic inversion system6 using Haskell, and ex-
plains that the overhead of the derived inversion to the handwritten inverse is
acceptable through an experiment with the implementation. The acceptably-
small overhead revealed that our method is not only theoretically feasible but
also useful for implementing a program inversion system for acceptably-efficient
inverses. Note that to derive inverses as efficient as possible is not our main issue,
but this is important because it is a general issue with program inversion.

6.1 Implementation

The prototype system implements grammar-based inversion with RTG (Sect. 4).
The system takes a program, and then generates a Haskell program of the left in-
verse if (Suff-Left) holds. Otherwise, the system generates a Haskell program,
which becomes a right inverse of the program if (Suff-Right) holds.

For parsing, the implementation uses guided tree automata [4], allowing >
to match any value. Since a guided tree automaton performs a top-down traver-
sal before a bottom-up traversal, the special case for > is easy to implement.
The derived inverse does not construct production or evaluation trees; they are
eliminated by program fusion. Recall that what we need is only θ of θ ` e ↓ v
for given e and v. The implementation determinizes tree automata to reduce
the overhead caused by nondeterminism of parsing. Although determinization
costs O(2n), where n is the size of an automaton (' the size of a program), this
cost is not severe for our purposes at least for the programs we tested in the
experiments.

6.2 Comparison with Handwritten Inverses

For several programs, we compared the execution time of automatically-derived
(left) inverses and handwritten (left) inverses for large inputs.7 Three programs
were investigated in the experiment: snoc and double implement snoc and
double in Sect. 1, respectively, and runlength implements run-length encod-
ing as in Fig. 11. Note that, for these three programs, the system can derive an

6 Available on: http://www.ipl.t.u-tokyo.ac.jp/~kztk/PaI/.
7 We used a PC with an Intel Core2 E8400 (3GHz) CPU and 2-GB memory, and used

Haskell compiler GHC 6.8.2.



runlength(x) = case x of {[ ] → [ ]; a : y → step(runlength(y), a)}
step(x, a) = case x of { [ ] → Pair(a, zero()) : [ ];

Pair(b, n) : y → updateRL(eq(a, b), n, y) }
updateRL(i , n, y) = case i of { Right(a) → Pair(a, inc(n)) : y;

Left(a, b) → Pair(a, zero()) : Pair(b, n) : y }
. . .

Fig. 11. runlength: eq(a, b) returns Right(a) if a = b, otherwise returns Left(a, b), and
zero() and inc(x) are 0 and +1 on binary representation of numbers, respectively. Here
Pair(a, n) means inc(n)-times successive occurrences of a.

Table 1. Results of experiment.

Program Inversion (s) #Input Automatically-Derived (s) Handwritten (s)

snoc < 0.05 ' 8 millions 0.95 0.67
double < 0.05 ' 10 millions 0.23 0.11
runlength 0.3 ' 9 millions 0.76 0.33

inverse that has the same complexity as that of a handwritten inverse because
construction of production tree P : Ee →∗ v at invE(e, v) runs in O(|P|).

All of these three programs satisfy (Suff-Left). The results of the experi-
ment are listed in Table 1. Each column represents the following: Program de-
notes the investigated program, Inversion denotes the elapsed time for inversion
including code generation, #Input denotes the number of constructors occur-
ring in the input tree, and Automatically-Derived and Handwritten denote the
elapsed time of the automatically-derived inverse and the handwritten inverse,
respectively. The size of input for each pair of automatically-derived and hand-
written inverses was chosen to enable the elapsed time to compared in seconds,
as long as there was no shortage of memory.

Inversion in Table 1 indicates that our implemented inversion runs very effi-
ciently. Even though in runlength the inversion process took about 0.3 seconds,
we found by extra profiling that more than half the time was spent for serial-
ization that makes a textual code from an abstract syntax tree. Automatically-
Derived and Handwritten in Table 1 indicate that the derived inverses run from
a half to a third of the speed of the handwritten inverses. We believe that this
small ratio would be acceptable. In addition, we expect that the ratio can scale
because the ratios of small programs such as snoc and double are almost the
same as that of a relatively involved program such as runlength.

7 Related Work

Many approaches to program inversion have been proposed [1, 7, 8, 11, 15–17,
25, 27, 30]. These methods are based on reverting the execution order of an
input program, unlike our method. Of these, those by Yellin [30] and Glück and
Kawabe [15] are the most closely related to ours.



Yellin [30] inverted string-to-string transformations written in a restricted
class of attribute grammars. His idea is an extension of evaluation of synchronous
grammars [2] — transformation by using two CFGs that share the same parse
tree modulo permutation of children. We borrowed his basic idea of restoring
the evaluation structure by parsing. Instead of CFG, we used tree grammars
because functional programs describe tree transformations. Regarding of the
class of invertible functions, with the restricted class of AG, one cannot de-
construct intermediate results, ruling out programs like runlength, i.e., those
programs are not handled by his approach. His framework, on the other hand, is
more suitable for programs defined using if -expressions, while we handle them
indirectly as in the eq and updateRL in Fig. 11.

Glück and Kawabe [15] constructed inverse programs by reversing programs,
before applying LR-parsing to the derived sequential programs to resolve non-
determinism. While our method and theirs are both “grammar-based”, they
place more emphasis on obtaining efficient inverses. Their method consists of
the three steps: (1) convert a program to a program in their stack-based lan-
guage, (2) apply LR-parsing to the stack-based program by taking the program
to be CFG, and (3) generate a program in which the stack in LR-parsing is
emulated by the stack of function call. Due to these three steps, they obtained
the efficient inverses because the inverses that have no parsing overhead. How-
ever, what class of programs is invertible is less clear in theirs because all three
steps affect invertibility. Steps 2 and 3 may fail, and Step 1 affects the later
steps because, for non-linear recursive functions, the result of Step 1 differs if
we choose a different evaluation order. Examples of functions discussed in this
paper can be handled with their method, while many of the programs they han-
dled would be invertible by grammar-based inversion with IO CFTG using a
deterministic bottom-up push-down tree automaton [28], which is a counterpart
of “LR-parsing” in CFTG. Theoretically, even with RTG, there exist programs
that can be handled by ours but not theirs.

Many program inversion techniques rely on proof of injectivity. In many exist-
ing approaches, post conditions [8,11,16,17] for branching statements/expressions
are used for this purpose. In Nishida and Sakai [25], completion is used to check
whether the obtained nondeterministic program is actually a function, which
implies the injectivity of the original program [26]. In grammar-based inversion,
we check injectivity by checking the unambiguity of grammar.

Another way to obtain inverse programs is, similarly to combinator-based
bidirectional language [12], to construct programs using invertible combina-
tors [23]; a program constructed in this way comes together with its inverse. Our
method can be incorporated into such combinator-based frameworks both for
providing basic invertible combinators and for gluing combinators as in Sect. 5.2.
In their frameworks [12, 23], accumulative functions such as reverse cannot be
represented directly but must be written as reverse ′ in Sect. 4. We believe that
grammar-based inversion with grammar beyond RTG would enable us to invert
more functions that are written in more natural forms.



Abramov and Glück [1] categorized inversion methods into program inversion
and inverse computation. Program inversion takes a program and returns an in-
verse program while inverse computation takes a program and an output and
computes the corresponding input. The two methods are different in two points:
A minor difference is that program inversion performs code generation, but the
main difference is the existence of partial evaluation; i.e., in program inversion
the obtained inverse is specialized to the input program. Note that the two no-
tions are not so different theoretically because generating a program that simply
calls “eval” to the pair of an inverse computation and an input program achieves
program inversion. Thus, it is important to discuss how much the inverse com-
putation is specialized to the input program. In grammar-based inversion, the
main chance of partial evaluation is when parsing the grammar. For a grammar
derived statically for an input program, we can choose an appropriate parsing
method according to the characteristics of the grammar.

The tree transducer [14] is a family of formal models of tree transformation.
Instances of tree transducers vary in terms of expressive power and difficulty of
inversion. We did not use tree transducers because, in all models of tree trans-
ducers we are aware of, a function may not perform case analysis on the output
of another function, while many programs we are interested in (e.g. runlength
in Fig. 11) are of the form g(. . .) = f(g(x)) with an invertible f that looks into
the result of g. We did, however, borrow many ideas from tree transducers, e.g.,
the grammar construction in Sect. 4.

8 Conclusion

We proposed grammar-based inversion, which is a framework for program inver-
sion. Grammar-based inversion can describe how difficult inverting a program is
through the complexity of the unambiguous grammar used for inversion. At the
same time, the complexity of parsing determines the worst-case complexity of a
derived inverse.

Grammar-based inversion gives us a new view of program inversion. With
it, we can split program inversion into two problems: finding an unambiguous
grammar that captures the evaluation structure of a program, and finding an
efficient parsing method for the grammar. For example, so far, many inversion
methods except Glück and Kawabe [15] have not handled functions containing
accumulation parameters. A solution with grammar-based inversion for such
functions is to use grammar such as IO CFTG that can capture the accumulation
structure, and to find an efficient parsing method specialized to the grammar.

Although grammar-based inversion can derive a right inverse, this is not very
useful because, in many applications, users do not want an arbitrary right inverse
but some right inverse. That is, some right inverse is more preferable than other
right inverses. For example, a right inverse achieving a high compression rate is
preferable in LZSS compression where a compression procedure is a right inverse
of decompression. Another interesting example is bidirectional transformation
(e.g., [12]). In bidirectional transformation, function f :: S → V is coupled with



its backward semantics fB :: (S, V ) → S; if the result of f is changed from f(s)
to v, the change is put back on S as the change from s to fB(s, v). A simple
example of bidirectional transformation is component extraction from a tuple,
such as fst(s1, s2) = s1 coupled with fstB((s1, s2), v) = (v, s2). In bidirectional
transformation, backward semantics fB is a right inverse of its forward semantics
f if the first argument of fB is fixed. In such right inverses, a right inverse
that achieves as small modification as possible is often preferable. It would be
important to extend the framework to accept user-defined “preferable” measures
to make grammar-based inversion more applicable.
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