Bidirectionalisng HaXML

Shin-Cheng Mu Zhenjiang Hu Masato Takeichi

Graduate School of Information Science and Technology,
The University of Tokyo

{scm,hu,takeichi}@mist.i.u-tokyo.ac.jp

Abstract

A transformation from the source data to a target view is galok bidirectionalif, when the target is altered,
the transformation somehow induces a way to reflect the @sahbgck to the source, with the updated source
satisfying certain healthiness conditions. Several bdional transformation languages have been proposed. In
this paper, on the other hand, we aim at making existing foamstions bidirectional. As a case study we chose
the Haskell combinator library, HaXML, and embed it itite, a language the authors previously developed to
deal with bidirectional updating. With the embedding, #rig HaXML transformations gain bidirectionality.

Keywords XML, bidirectional updating, domain-specific languagesamsible computation

1. Introduction

XML [5], partly stimulated by the growth of the Web and e-coemee, has emerged as tthe factostandard for
representation of structured data and information inemge. Many organizations use XML as an interchange
format for data produced by applications like graph-plsttepreadsheets, and relational databases.

Transformation of XML documents from one format (strucjuie another plays a significant role in data
interchange. The XML address book in Figure 1, where eadly enntains a name, an email address, and a
telephone number may be transformed to an HTML documentgarEi2, with an index of names and a table
enlisting the contact details. The transformation may hi#ewr in a domain-specific language, such as XSLT.
We may use this transformation in an XML editor where the seixML document is displayed to the user as
HTML, or a homepage builder where a webpage is generateddroXML database.

However, it is not specified how the XML document shall be wedaf the HTML view is altered. Yet this
reverse transformation from the view to the source, althaugt yet well-studied, is also important [12]. In an
XML editor or in a homepage builder, we may wish that when therufor example, adds or deletes a person in
the view in Figure 2, the original document in Figure 1 be updaorrespondingly. Further more, the changes
should also trigger an update of the index of names in FiguWée2may even wish that when an additional name
is added to the index, a fresh, empty person will be addecetpdinson bodies in both the source document and
the view.

This so-calledbidirectional updatingproblem (coined by, to the best of the authors’ knowledgé), iF®
attracting lots of interests recently, as people identifi@dous situations where one wants to transform some

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguiees prior specific
permission and/or a fee.

ICFP '05 September 26-28, 2005, Tallinn, Estonia.
Copyright(©) 2005 ACM supplied by printer. .. $5.00.

<addrbook>
<person>
<person>
<name> Shin-Cheng Mu </name>
<email> scm@mist.i.u-tokyo.ac.jp </email>
<tel> +81-3-5841-7411 </tel>
</person>
<name> Zhenjiang Hu </name>
<email> hu@mist.i.u-tokyo.ac.jp </email>
<tel> +81-3-5841-7411 </tel>
</person>
<person>
<name> Masato Takeichi </name>
<email> takeichi@acm.org </email>
<tel> +81-3-5841-7430 </tel>
</person>
</addrbook>

Figure 1. An XML document representing an address book.

<html>
<body>
<h1>IPL Address Book</h1>
<1i> Shin-Cheng Mu </1i>
<1li> Zhenjiang Hu </1i>
<1i> Masato Takeichi </1i>

<table>
<tr><th>Name</th>
<th>Email</th>
<th>Tel</th>
</tr>
<tr><td> Shin-Cheng Mu </td>
<td> scm@mist.i.u-tokyo.ac.jp </td>
<td> +81-3-5841-7411 </td>
</tr>
<tr><td> Zhenjiang Hu </td>
<td> hu@mist.i.u-tokyo.ac.jp </td>
<td> +81-3-5841-7411 </td>
</tr>
<tr><td> Masato Takeichi </td>
<td> takeichi@acm.org </td>
<td> +81-3-5841-7430 </td>
</tr>
</table>
</body>
</html>

Figure2. A wiew of the address book in HTML.

data structure into a different form and wishes that chamgade to the new form be reflected back to the
source data. One may want modification on the view to be reflielback to the original database, which is
known asview updatingn the database commuinity [3, 6, 8, 19, 1]. One may want tolssonize the bookmark
files of several different web browsers (on different maek)n9], allowing bookmarks and bookmark folders
to be added, deleted, edited, and reorganized in any braavektater combining the changes performed in
different browsers. One may want to have a programmablergdi2] supporting interactive refinement in the
development of structured documents, where one performeg@esce of editing operations on the document
view, and the editor automatically derives an efficient aglthble source document and a transformation that
produces the document view.

Several domain-specific languages [9, 16, 18, 12] have begoged to define bidirectional transformations.
In the forward direction, these transformations mamarceree to aview, in the backward direction, they map
a modified view, together with the original source, to a cgpondingly modified source. One would like to
know, however, whether an existing transform written irtbeansformation languages, like XSLT, can be made
bidirectional. As far as we are aware, there is little workluis.

As a case study, we show in this paper howidlirectionalisean existing XML processing language, HaXML.
HaXML [23] is a collection of utilities for parsing, filtergy transforming, and generating XML documents using
Haskell. It provides, among other tools, a combinator prahich can be seen as a domain-specific language
embedded in the general-purpose functional language HaXkéL. documents are represented using native
Haskell data type, and HaXML provids a set of powerful higheter functions to process them. A transform
coded in the HaXML combinators is usually more compact tigaduivalent in DOM, SAX, or XSLT. For the
rest of the paper when we talk about HaXML, we will be referiadts combinator library.

If we think of the forward transformation as a function frohetsource to the view, bidirectional updating,
at the first glance, is the problem of looking for a suitablarse among the inverse image of the given view.
The situation is made a bit more difficult, however, when thadformation involves duplication and structural
constraints. If we delete a name in the index part in Figuferzzxample, the edited view is not in the range of
the transform. Yet we still need to produce a reasonabletagdmurce.

In [18], we developed a languadev to deal with bidirectional updating, paying special ati@mtto the
handling of duplication and structural alignments. Theali@yment ofinv takes a layered approach. In the
original semantics dhv, the programmer is allowed to define injective functiong/olm an extended semantics,
the reverseof everylnv function maps an edited output, which might not be in the eaoigthe function, to a
reasonable input. In this paper, we add another layer bylalgng an embedding of HaXML tth. Therefore,
when the programmer designs a forward transformation, wa gackward transformation for free.

The rest of the paper is organized as follows. We start byiprieviewing the core of HaXML [23], a general-
purpose unidirectional transformation language, in $acfl. Then, we highlight the bidirectional updating
problem in Section 3. After explaining the basic conceptbidirectionality and the languadev in Section 4,
we show that any transformation specified by HaXML can be eltbé into a bidirectional transformation in
Inv in Section 5. Related works are discussed in Section 6, amclugions are made in Section 7.

2. Tree Documents and Tree Transformations

In this section we will briefly review the core componentsie tombinator library of HaXML [23]. An XML
content is either an element or a text fragment. An elemeamdists of a tag and a sequence of contents. HaXML
represents XML documents by native Haskell data struciwmepresentation of this paper, we will use a more
simplified representation of XML trees. The languages ddfinethis paper will deal with a range of values
defined by the syntax below:

<
|

n= Sring| [V]|[(V,V)|T
T == NSring[T]|LString
@ == []la:][d

addrbook = N Addrbook

N Person
[N Name [Shin-Cheng Mu],
NEmail [scm@ipl.i.u-tokyo.ac. jp|,
N Tel [+81-3-5841-7411]],

[N Person
[N Name [Zhenjiang Hu],
NEmail [huGmist.i.u-tokyo.ac.jp|,
N Tel [+81-3-5841-7411]],

N Person
[N Name [Masato Takeichi],
NEmail [takechi@mist.i.u-tokyo.ac.jp|,
N Tel [+81-3-5841-7411]]

]

Figure 3. An example of simplified representation of tree documents.

For the purpose of this paper, the string is the only atonpe tyVe use typewriter font to denote a string literal.

We can construct pairéV/, V), lists [a], and trees. A tree is either a leaf, or a node with a label arnst afl

subtrees. When it is clear from the context we would omititltenstructor to save space. This rather simplified

view of XML omits some features, such as attributes, thatrarial to add, and some features such as IDRefs,

which will be our future work. The range of values will be et extended in Section 4 to record user editing.
Figure 3 gives an example of this representation of the ticerdent source in Figure 1.

2.1 TreeTransformations

Combinators in HaXML are callefilters. They have typd — [T], taking a tree and returning a sequence of
tree. The result might be empty, a singleton list, or a ctitecof trees.

Basic Filters

A set of basic filters in HaXML is given in Figure 4. The simpléifers arenone andkeep; none fails on any
input (returning an empty list), arigep takes any tree and returns just that tree.

The filterelm returns just this item if it is not a leaf, otherwise it failSonverselytxt returns this item only
if the item is a leaf. The filtetagt returns the input only if it is a tree whose root has the taganarhhe filter
literal salways returns a leaf labellegiwhile replace Tag s changes the labalif the input is a node, and returns
empty list otherwise. The filters so far return either a st list if the input satisfies certain predicate, or
empty list otherwise. In this paper we will call thesingletorfilters.

Other filters do not have fixed constraints on the length ofdbput list. The filterchildren returns the
immediate children of the tree, if any.

Filter Combinators

Figure 5 lists all combinators to compose filters out of senmnes. The sequential compositibfig ap-
plies f to the input, before applying to each of the output and concatenating the results. For gheam
tagtitle’ children’txt returns all the plain-text children immediately enclosadtle input, provided that
the input is labelleditle. In [23], composition is actually written backwards, aginf. In this paper we use
forward composition to be consistent with the syntacti¢edice we made ifnv.

The combinatof ||| g concatenates the results of filtdrandg, while cat fsis a generalisation df| to a list
of filters. The combinatof with g acts as a guard on the resultsfofkeeping only those that are productive
(yielding non-empty results) undgr Its dual,f without g, excludes those results bthat are productive under
0. The filterf et g appliesf to the input if it is a leaf tree, and appliggo the input otherwise. The expression

Predicates:

none :: Filter { zero}
keep :: Filter { identity }
elm :: Filter { tagged element?
txt : Filter { plain text?}
tag = String — Filter { named roo¢
Selection:
children :: Filter { children of the roo}
Construction:
literal ;o Sring — Filter { build plain text}
mkElem . Sring — [Filter] — Filter { build a tree with an inner nodg
replaceTag :: Sring — Filter { replace root’s tag

Figure 4. Basic filters.

B :: Filter — Filter — Filter { sequential compositioh

(1) :: Filter — Filter — Filter { append result$

cat o [Filter] — Filter { concatenate ressul}s

with :: Filter — Filter — Filter { guard}

without :: Filter — Filter — Filter { negative guard

et . (String — Filter) — Filter — Filter { disjoint union}

?y:- = Filter — Filter — Filter — Filter { condition}

chip :: Filter — Filter { in-place children applicatioh

Figure5. Basic filter combinators.

p?) f :)g represents conditional branches; if the (predicate) filter productive given the input, the filtéris
applied to the input, otherwiggis applied. The filtechip f appliesf to the immediate children of the input. The
results are concatenated as new children of the root.

The filter mkElem t fs builds a tree with the root labé¢j the arguments is a list of filters, each of which
is applied to the current item. The results are concatenatetl become the children of the created ele-
ment. For example, the filtenkElem m [children | tag a, children], applied to inpuN r [Na[],Nb[]], produces
Nm[Na[],Na[],Nb[]]. The first child,N a[], results fromchildren’ tag a, while the rest result frorahildren.

Derived Combinators

A number of useful tree transformations can be defined as HaXlkérs. For instance, we may define the
following two path selection combinatoys and(/.

f/yg = fichildrenig

f(/g = fwith(children?qg)
Both of them applyf to the input and prune away those subtrees of the result tiest 0ot makey productive
(i.e.,gdoes not fail);/) is an ‘interior’ selector, returning the inner structu¢éjs an ‘exterior’ selector, returning
the outer structure.

Another class of useful filter combinators allows one to pesctrees recurively. The combinattep f

defined by

deepf = f?)f :)(children’deepf)

<xsl:template match="/">
<html>
<body>
<h1>IPL Address Book</h1>

<xsl:for-each select="addrbook/person">
<xsl:value-of select="name"/></1i>
</xsl:for-each>

<table>
<tr>
<th>Name</th>
<th>Email</th>
<th>Tel</th>
</tr>
<xsl:for-each select="addrbook/person">
<tr>
<td><xsl:value-of select="name"/></td>
<td><xsl:value-of select="email"/></td>
<td><xsl:value-of select="tel"/></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>

Figure 6. A transformation in XSLT.

potentially pushes the action of filtérdeep inside the document sub-tree. It first tries the givéer fin the
current node: if the filter is productive then it stops, ottiee it moves to the children recursively. Another
powerful recursion combinator fsldXml: the expressiofoldXmlf applies the filtef to every level of the tree,
from the leaves upwards to the root.

foldXmlf = (chip (foldXmlf)):f

Consider the transformation in XSLT in Figure 6, which carprttze XML address book in Figure 1 to the
HTML document in Figure 2. We can define it in HaXML as in Figite

3. TheBidirectional Updating Problem
Consider again the filter

f = mkElemm [children?tag a, children]

upon receiving a source documét [Na[],Nb[]], producing the viewm [Na[],Na[],Nb[]].

It is conventional to call the source-to-view transform GEmd the view-to-source transform PUT. Now
assume that the user changes the vieNtoN a[],Na[c],Nb[]]. The altered view is not in the range of the
function defined by anymore. However, the system shall somehow know thallthe] andN a [c] came from
the same subtree in the source, and PUT it to the updatededdurN a [c], N b []]. If we perform GET again,
we get a new vieNm [N a [c], N a[c], Nb[]], which is now in the range df The two subtrees, the source and
the view, are thus synchronised.

If the user changes the viewlkom [Na [], N c[], Nb[]], the system should PUT the viewlr [Nc [],Nb[]].
In the next GET the filtetag a would produce a null result and the resulting view would\ae[N ¢ [],Nb[]].

html
[body
[h1[literal IPL Address Book]|,
ul [(keep /) tag person /) tagname) ; replaceTag 11i]
table
[tr [th [literal Name, th [literal Email], th [literal Tel]],
(keep /) tag person) ; mkRow |]
where
mkRow = tr[(tag person/)tagname)’replaceTag td,
(tag person/)tagemail)’replaceTag td,
(tagperson/)tagtel)’replaceTag td]

html = mkElemhtml
body = mkElembody
hl = mkElemhi

ul = mkElemul

li = mkElem1i
table = mkElemtable
tr = mkElemtr

th = mkElemth

td = mkElemtd

Figure7. A transformation in HaxXML.

Had the user changed the viewNa [N c [],Na[], Nb[]], however, the system may choose to declare that this
is an invalid change and warn the user, sitigea could not have producel c [].

Apart from editing labels, the user is allowed to insert néaments too. Assume a new eleméhb [] is
inserted between the resultstag a andchildren (inserting into the result of the latter is relatively eas@edeal
with), resulting inNm[Na[],Nb[],Na[],Nb[]]. The reasonable choice is to assume ha{ | is the result of
children and produces the sourber [Nb[],Na[],Nb[]]. If the inserted element ¥ a [|, however, the system
needs to make a biased choice.

In general, the edited view may not be in the range of the toams We may want to, in reasonable cases,
have it be PUT to some source. The updated source, after a @& atmn, results in an update view. It may be
the case that the editing shall not be allowed, and the edigsdis not mapped to any source. Or there may be
more than one possible source, and the system has to make&a.cho

That raises the question: what is a legal source? A more mmbiformulation of bidirectional updating
may, for example, attempt to choose a source based on soereariteria (for example theinimal change
principle in [16]). At present, however, we enforce only aservative constraint, one that making sure that
we do not need repeated GET and PUT. For every transformatiwe assume the existence of two functions:
gety :: S — V defines the transformation from the source to the view, whitg :: (S x V) — Stakes the
original source and an edited view, and returns an updatedeso

DEFINITION 1 (Bidirectionality). A pair of functionggety :: S — V andputy :: (Sx V) — Sis called
bidirectionalif they satisfy the following two properties:

GET-PUT-GET: gety (putysv) =v wherev = gety S

PUT-GET-PUT: putsS (getxS) =S wheres = putxsv

The GET-PUT-GET property says that updatswgith v and taking its view, we gatagain, provided thatwas
indeed resulted froms — for generalv this property may not hold. The PUT-GET-PUT property say ths'

Inv = Inv” | nil | cons| node | isStr | neq
| 6 | dupNil | dupStr Sring
| Inv;Inv | id | Inv U Inv
| Inv x Inv | assocr | assocl | swap
| w(V: Invy)
[nil] () = | [la = (a3
[cond (a,x) = a:x
[nodg (a,x) = Nax [f:dlx = (9 (1%
[ida - a [f xdl(ab) = (Iflaldb)
[p?7]a = aif pa [fud = [fluld],
if domf Ndomg = ranf Nrang =0
[swap] (a, b = (ba) : .. ,
[assocr] (@.b).c) = (a(bo) [stls == sif sisasting
[assocl] (a, (b.c)) = ((ab).0) }{p?fﬂl (ab) = ﬁ’om Fazb
[dupNilla = (a[]) [1F] = [FuF]
[dupSrjsa = (a9

Figure 8. The languagénv and its semantics when restricted to values without editigg.

is a recently updated source, mapping it to its view and imately performing the backward update does not
change its value. This property only needs to hold for trs®ethe range ofuty . The two properties together
ensures that when the user alters the view, we need to pedolyroneput followed by oneget No further
updating is necessary. In Section 5.4 we will show that oukMha embedding is indeed bidirectional.
Remark: The following GET-PUT and PUT-GET properties are requinedli6, 9] to hold for arbitrary

ands’:

GET-PUT: putss(getxs) =s for any sources

PUT-GET: getx (putxsv) = v for any viewv

For our application, the PUT-GET property does not hold fareyalv, as seen in our examples above. The GET-
PUT property (which actually holds for our HaXML embeddifigve restrictsto untaggedralues) implies our
PUT-GET-PUT property, but we specify only the weaker castrin the definition of bidirectionality.§nd of
remark)

4. ThelLanguage Inv

The languagénv was developed to study the bidirectional updating behavia17], Inv was designed to be
a programming language defining injective functions onlye ¢io the our belief that a study of bidirectional
updating can be made more elegant if we first concentrate jeative functions. In [18], the language was
given an extended semantics, where evetyexpression of typd — B induces a binary relation betweén
andB, mapping the edited values Ato a reasonable choice of sourceBnThe sometimes biased choice can
be inferred by algebraic rules.

In Section 4.1 we give a brief introduction kav, and in Section 4.2 we discuss how its extended semantics
handles duplication and structural alignment. To be saift@ined, we provide a brief, simplified summary
about the extended semantics in Section 4.3. The readdersat to [18] for a more complete account.

4.1 ThelLanguage Inv

Shown in Figure 8 is a subset bfv we need for this article. Bynw, we denote the union dfwv expressions
with the set of variable names. We denote[Hythe semantics function. The full semanticslof is discussed
in [18]. For the purpose of this paper, it suffices to think afle construct as defining a relation which, when its

domain and range are restricted to the types defined in 8egti@duces to an injective partial function. When
the input is aaggedvalue, to be defined in Section 4.2, the relation maps the impan updated result induced
by the algebraic rules in to be mentioned in Section 4.3.

The languagénv deals with a wider range of datatypes, including unit, pdists, and trees. A list is built by
constructorsiil andcons, where the input ofiil is restricted to unit type. The constructazde produces a tree
from a pair consisting of a label and a list of subtrees. Omeatso produce a fresh empty list or a string using
dupNil or dupStr.

The functionid is the identity function, the unit of composition. The fuinct isSring is a subset ofd
returning strings only, whileeg returns a pair unchanged only of the two components are eseime. Function
composition is denoted by semicolon. Union of relationsdeling conditional branches, is simply defined as
set union, with a restriction that the two relations havgoitis domains and ranges. The prod(ctx g) takes a
pair and applie$ andg to the two components respectively. Note that compositiadstighter than product.
Therefore(f; g x h) should be bracketed &§; g) x h).

The functionsswap, assocl andassocr distributes the components of the input pair. All functishat move
around the components in a pair can be defined in terms of pigdssocr, assocl, andswap. We find the
following functions useful:

subr = assocl; (swap x id); assocr
trans = assocr; (id x subr); assocl

In the injective semantidsubr] (a, (b, c)) = (b, (a,c)) and[trang ((a,b), (c,d)) = ((a,c), (b,d)).
The converseof a relationR is defined by

(bba) e R = (ab)eR

In the injective semantics, threverseoperator(_)” corresponds to converses on relations. The reversensf
for example, decomposes a non-empty list into the head anthilh The reverse afil matches only the empty
list and maps it to the unit value. The reverseswép is itself, andassocr andassocl are reverses of each other.
The reverse operator distributes into composition, prtsdacd union by the following rules, all implied by the
semantics definitiofif] = [f]°:

[(f:9)71 = [gT: [F] [F1 =1f]
[(f <@ T =" >xg)] [(F)T = [n(X: (FX))]
[(fugT=IFTuld]

In particular, the reverse of two functions composed isrtreierses composed backwards.

The operator is worth our attention. It generates a copy of gsiaent. We restrict the use 6fto atomic
strings only. Its reverse is a partial function acceptinty @airs of identical elements. Therefore, the inverse of
duplication is equality test.

A number of list processing functions can be defined usindixeel-point operator. The standard functions
foldr, map, and unzip (transposing a list of pair to a pair of lists) can be definedctly as the point-free
counterpart of their usual definitions:

foldrfg = w(X:nil";gu
cons’; (id x X);f)
map f foldr ((f x id); cons) nil
unzip = p(X:nil™; 6 (nil x nil) U
cons’; (id x X); trans; (cons x cons))

In Inv there is no higher-order functions. Howevietdr andmap can be seen as macros.

With unzip we can define a generic duplication operator. digd; be a type-indexed collection of functions,
each having typa — (a x a):

c‘UpString = 9

dupaxp) = (dupa x dupy);trans

dupyq = mapdupy; unzip

dupree = p(X: node”; (dupsring X Map X; unzp); trans; (node x node))

In particular, to duplicate a list we shall duplicate eachneént and unzip the resulting list of pairs. In the
discussion later we will omit the type subscript.
Concatenating two lists +- y is not injective. Nor is the standard functioancat :: [[A]] — [A] flattening a
list of lists. However, the functionatx(x,y) = (X, X + V) is injective:
catx = (X : swap; dupNil™; dupNil; swap U
(cons” x id); assocr; (dup x X);trans; (cons x cons))
With catx we can define the following injective variant ofncat:

concatx = foldr cx (nil; dup)
where cx = subr;(id x catx); assocl; (swap; cons x id)

which is informally specified bgoncatx [X,y, ...,z = ([X,Y,...Z,X+# Yy + ...+ 2). This function turns out
to be crucial in our HaXML embedding.
4.2 Duplication, Alignment, and Concatenation

One of the motivation behind the developmentof was to study the handling of duplication and structural
alignment. To do so we have to extend the domain of values aiendth:

Voou= AVEIVTVI(V,V)|T
T == NAIT]

[& == []|a:]d]

A == Sring| *Sring| T

The editing tags(_)", (), _), and T are used to record the action performed by the user of theredihe
«_) tags applies to atomic values (strings). When the user @satige value of a string the editor marks the
string with thex(_) tag. The(_)" tag indicates that the tagged element is newly inserted eyser. When
the user deletes an element it is wrapped ljy)a, keeping note that it ought to be deleted but we temporary
leave it there for further processing. The symBoldenotes an unconstrained value, to be further refined
Values containing any of the tags are caliagged otherwise they arentaggedThe injective semantics ofiv
deals with untagged values only. In this section, we wilbmially talk about hownv programs behave, in the
extended semantics, given tagged input. In the next seatiowill give it a more formal account.

As described in the previous sectidn,is a partial function performing equality test. The two qgmments in
the pair are compared, and one of them is returned only whasnaite identical. When the user edits an atomic
value, the action is recorded bya) tag. In the extended semantics, we generalisech that it recognises the
tag:

[07] (s,) = 0 [6] (n,n) =n
[67] (m#n) =n [6](n,T)=n
[67] (n,m) =0 [0 (T,n)=n

When the two values are not the same but one of them was edjitéu luser, the edited one gets precedence
and goes through. Therefofe), m) is mapped ton. If both values are edited, however, they still have to be the
same.

In the semantics in [18], there is AD. Instead, a relation may non-deterministically map theiiip many outputs, and refined when
composed with other relations. Howevérwas indeed used in the implementation.

concatw = pu(X:
nil™; nil; dup U
cons’; (

swap; dupNil™; X; (dupNil; swap; cons x id) U

(wrap” x id); (dup; (wrap x id) x X);
trans; (cons x cons) U

(cons” x id); assocr;
(dup x cons; X; (revcons x id));
trans; (assocl; swap x id); assocr;
(id x (cons x cons)); assocl;
(swap; cons x id)))

Figure 9. Definition of concatw.

Still, the § operator handles atomic values only. To unify structuréhdae have to synchronise their shapes
as well. Letzip = unzip™. This partial function of typ&[A] x [B]) — [(A x B)] zips together two lists only if
they have the same length. In general zipping functions seulias constraints on shape. In an editor, however,
the user may add or delete elements in one of the list. Thect#tts may not have the same lengths, and we
have to somehow zip them and still align the paired elemeggsther.

One of the main achievement of [18] is that, using the sameiitefi of unzip above with a small
amount of annotationgjp in the extended semantics knows how to zip together two \Wétsn they contain
inserted or deleted elements. For exampiezip[(1,a), (2,b), (3,c)] yields ([1,2, 3], [a, b, c]). If we label
one element with a delete tagip([1,27,3],[a,b,c]) yields [(1,a),(2,b) ", (3,c)] — the corresponding
element is deleted as well. If we insert an element, ($&y2, 3], [a,b,d™, c]), zipping them together yields
[(1,a),(2,b),(T,d)", (3,c)]. An unconstrained value is invented and paired with the némdertedd, and
might later be further constrained bByor other structural constraints.

Recall thatupy; = map dup,; unzip. The use ofinzip synchronises the shape of the two lists in the backward
updating. Similarly withdupree Where we usenzip to synchronise the list of subtrees.

The reverse ofoncatx maps([Xi, Xa, - - - , X, X) t0 [X1, X2, . . . , Xn] if X HXa . .. HXy = X. Rather than simply
returning the first component of the pair, every element is checked against elements [y, xo, ..., X].
There are a number of ways to partition a }shto segments, but, in the injective semantics, only onéefrt
is consistent with the original input. In the extended seticanwhere we have to deal with alteration of
however, we have to make a biased choice when new items ameidgo the list. According to the semantics
in [18], this particular definition otoncatx tend to glue the new element at the edge of lists to the baagk. Fo
example([[1,2],[3,4]],[1,2,5%, 3,4]) is mapped td[1, 2], [5T, 3, 4]].

However, such a choice is not always preferred. In some @mt@ws/e need to make the new element a stand
alone singleton list. The following Haskell functi@oncatw deals with singleton list separately:

concatw] = ([0

concatw ([] : xs) = (([]:) x id) (concatw xs)

concatw ([a] : xs) = (([a]:) x (a:)) (concatw xs)

concatw ((a: b:x): xs) = ((A((b:x):xs) — (a:b:X):xs) x (a:)) (concatw ((b: X): xs))

Its Inv translation, given in Figure 9, coincides witloncatx in the injective semantics. In the extended
semanticsconcatw” breaks the list after newly inserted elements. For exaniple 2], [3,4]], [1,2,57,3,4]) is
mapped td[1, 2], [5] T, [3, 4]]. We need botlroncatx andconcatw in the embedding.

4.3 TheExtended Semantics

To be self-contained, in this section we give a brief, sifigddi summary of the results in [18], explaining how
the extended semantics deals with bidirectional updalihg.readers can safely skip this section at first reading.

The main instructive example will hanzip, defined in Section 4.1. Its reverggy = unzip’, according to the
distributivity of ~, is given by:
Zp = p(X: (nil” xnil"); 67 nil U
(cons” x cons’); trans; (id x X); cons)

The puzzle is: how to make it work correctly in the presence pf and(_)~ tags?
We introduce several additional operators:

e del andins, parameterised by a value. The functiteh a takes a lisik to a~ : x, whileinsa takesxto at : x;
e fsty andsnd,, defined by:

fap (a,b) = a
sndy (a,b) = b

That is,fsty eliminates the second component of a positive pair onheifitalsh. Otherwise it fails. Similarly,
snd, eliminates the first component of an ordinary pair only ofgtialsa. When interacting with existing
operators, they should satisfy the algebraic rules in Eigay, which are obviously true given their semantics.

* Also, we restrict the domain @bns’ to lists whose head isottagged by eithef_) ™ or (L) .

An extendedip capable of dealing with deletion can be extended, from tlggral zip by (here . .” denotes
the original two branches afp):

u(X:...UVa,b:
((insa)” x (insb)”); X;ins(a,b) U
((insa)” x isList); X;ins(a, b) U
(isList x (insbh)™); X;ins(a,b) U
((del @)™ x (del b)™); X; del (a,b) U
((dd@)” x cons’; sndp); X; del (a,b) U
(cons’; snd, x (del b)7); X; del (a, b))

wherea andb are universally quantified, aneList = nil™; nil U cons’; cons, a subset ofd letting through only
lists having no tag at the head. Look at the branch startirily (finsa)” x (insb)”). It says that, given a pair
of lists both starting with insertion tags™ andb™, we should deconstruct it, pass the tails of the lists to the
recursive call, and put back da, b) ™ tag. If only the first of them is tagged (matching the braneintstg with
((insa)” x isList)), we temporarily remove the head, recursively process the lists, and put béakb) ™ with

a freshly generated. It is non-deterministic whiclp is chosen, and might be further constrained wkieris
further composed with other relations.

The situation is similar with deletion. In the branch stagtivith ((del @)” x cons’; snd,) where we encounter
a list with ana deleted by the user, we remove an element in the other listeamdmber its value ib. Here
universally quantified is used to match the value — all the branches with diffel&nare unioned together,
with only one of them resulting in a successful match. Aftergessing it recursively, we cons the list with the
head(a, b)~ indicating that a paifa, b) was removed from the resulting list.

It would be very tedious if the programmer has to explicitlsjtevdown these extra branches for all functions
(let alone that we did not provide the construct for univergaantification.) We wish thatlel, ins, fst and
snd do not appear in the programs, but the system can somehove diee additional branches. Luckily, these
additional branches can be derived automatically usingutes in Figure 10.

In the derivations later we will omit the semantics functjghand use the same notation for the language
and its semantics, where no confusion would occur. This ieinéor the sake of brevity.

In place of ordinarycons, we define two constructs addressing the dependency ofistesc Firstly, thebold
consis defined by::

cons = consu
Ua::A(Snda— ; del a-) U Ua::A(SndaJr; insa)

Secondly, we define the followirgync operator:

sync = (cons x cons)
sync® = (cons” x cons’)
U Uapea(((del @)75nd, " x (del b)”; sndy,)
U ((del @)7; sndy-~ x cons’; sndy- ; snd,-)
U (cons’; snd,-; snd,-~ x (del b)™; snd,-7))
U Uapea(((insa)”;sndg+ ™ x (insb)™; sndy+ ™)
U ((insa)”; sndy+~ x isList; sndp+ ")
U (isList; sndy+ ™~ x (insb)™; sndy+ 7))

In the definition ofzip, we replace every singular occurencecofs with cons, and every(cons x cons) with
sync. The definition ofsync™ looks very complicated but we will shortly see its use in degivation. Basically
every produce correspond to one case we want to deal withn Wbt the lists are cons lists, or when one or
both of them has a tagged value at the head.

After the substitution, all the branches can be derived bgladaic reasoning. The rules we need are listed in
Figure 10. Only rules foassocl are listed. Free identifiers are universally quantified. fithes forassocr can
be obtained by pre-composiragsocr to both sides and usasscor; assocl = id. To derive the first branch for
insertion, for example, we reason:

zp

{fixed-point
sync’; trans; (id x zp); cons

{sincesync™ 2 ((insa)”; snda+~

x (insb)™; sndy+ ") for all a, b}

((insa)” x (insb)”); (snda+ "~ x sndp+");
trans; (id x zip); cons

{claim: (sndy+ ™ x sndy+7); trans = (sndy,)+)"}

I

I

I

((insa)” x (insb)”); (snd, ,)+)7; (id x Zip); cons
= {since(f x g);sndr 4 = sndy; g for total f }
((insa)” x (insb)™); zip; (snd(a7b)+)‘; cons

V)

{sincecons D S5)+ ins(a,b)}

((insa)” x (insb)™);

= {sincesndy”; sndx = id}
((insa)” x (insb)”); zip;ins(a, b)

We get the first branch. The claim theans’; (snd,+ x sndy+) = snd(abﬁ can be verified by the rules in Figure
10. In a similar fashion, all the branches can be derived mycelly.

The situation withcatx is similar: (cons x cons) is interpreted async, and from which we can derive other
branches needed to deal with tagged values. The good ththgtishe particular choiceatx make is inferred
from the algebraic rules.

The algebraic rules can be applied both forwards and bacdsyathich seem to cause problems for automatic
transformation. Luckily, it is possible to integrate theskes in aninv interpreter. The details are given in [18].

(f x 9);fstgny = fsty;f, if gis total

(f xg);sndq = sndg;g, if fis total
swap;snd, = fsty
snd, s eqnil = (A[] —a)
assocl; (fstp x id) = (id x sndp)
assocl; (snd,y x id) = (snd; U snd,)

assocl; snd po SNdgo 5 (SNdpo U snd)

Figure 10. Algebraic rules. Heré\ [] — a) is a function mapping only empty list & The O may denote
either a(_)* ora(_)~ or nothing.

5. Bidirectionalisation Embedding

We are now ready to show how tree transformations in HaXML banembedded into the bidirectional
transformation languaglv. We call the type of source documerfisand that of viewsV. They are both
embedded in the type for trees but we nevertheless disthghem for clarity. The trick is that every HaXML
construct is embedded as lan expression denoting, in the injective semantics, a funatidypeS — (Sx [V])
that takes a source and produces a pair consisting of a cahg given source together with the view.

The function is apparently injective because the sourcepsik the output. Its inverse, of tyg8x [V]) — S
maps the original source and its corresponding views bathet@ource. In the extended semantics, however,
when given the original source and aditedview, thelnv expression magically produces an updated source
consistent with the transform.

The embedding is presented in Section 5.1, 5.2, and 5.3.rAop@rward/backward transformations has to
satisfy a set of healthiness constraints. This is given oii@e5.4.

5.1 EmbeddingBasic Filters

The embedding from HaXML constructs bov is denoted by|_|. The filter none always pair the input with
an empty list. It is therefore simply embeddeddapNil. The filterkeep, on the other hand, always produces a
singleton list of the input:

[none] = dupNil
[keep] = dup;(id x wrap)

wherewrap = dupNil; cons, wrapping an item into a singleton list. Other “singletortefis — those returning
either an empty list or a singleton list, are also defined rimgeofdup, dupNil, andwrap:

[elm] = isNode;dup; (id x wrap) U
isStr; dupNil
[txt] = isNode; dupNil U

isStr; dup; (id x wrap)

whereisNode = node”; node. The filterelm returns a singleton list only if the input is a node, whike returns
a singleton list only if the input is a string. In both caslep is used to copy the input.
The filtertag is slightly more complicated because we need to check the\althe tag:

[tags|] = node’; (strEqs x id); node; dup; (id x wrap) U
node’; (strNEqgs x id); node; dup; (id x wrap) U
isSr; dupNil

wherestrEqgs andstrNEqg s check whether the given string equals or not eqaal$hey are defined by:
strEqs = dupSrrs;é”
strNEgs = dupStr s; neg; (dupStr s)”
The filter children usesdup to copy the list of children, after decomposing the inpuhgsiode™. The input
is reconstructed usingpde again.
[children] = node™; (id x dup); assocl; (node x id) U
isSr; dupNil
We will defer the discussion about another important fittdsElem to the next section, after we talk about
sequential composition.

5.2 Embedding Sequential Composition

Assume that we have two embedded filtgfs :: A — (A x [B]) and[g] :: B — (B x [C]). How should we
produce their embedded composition of type- (A x [C])? Thelnv expressionf]; (id x map[g]) applies
[f] to the input and g]| to every result offf |, resulting in(A x [(B x [C])]). We now need to get rid of the
intermediate values of tyd®, and concatenate the nestéslinto a single list. However, there is no information-
losing constructs ifnv.

Let us first try to concatenate all ti@s together. The functiopull :: [(B x [C])] — ([(B x [C])] x [C]) below,
usingconcatx, collects all theCs a single list, while keeping the inp{B x [C])].

pull = unzp;(id x concatx); assocl; (zZp x id)

The next step is to notice thag|” has type(B x [C]) — B. If we applymap [g]™ to the list[(B x [C])], we get
a list of Bs. Finally, we can eliminate thBs using[f|” :: (A x [B]) — A. Composition of filters is therefore
defined by:

[fl9] = [fl>]g]
frg = f;(idx mapg;pull; (mapg” x id));
assocl; (f™ x id)
We isolate the definition of because we will use it again later. The seemingly inefficegplications of{f|”
and[g|” is only in the specification. This is essential the samé wged by [4] to embed Turing machines into
reversible Turing machines, where the embedded Turing machran backwards to eliminate the intermediate
result. The situation is merely made more complicated byabgthat filters return a list of results.
What made the effort worth, however, is that the sdmeexpression also specifies how to perform the
backward updating. Consider the compositibiidren ; children, given the input = Na[Nb[c,d],Ne[f, g]].
In the forward run, the output is the original input pairedhwthe list of grandchildren(t, [c, d, £, g]). Assume
the user inserts a new itejn, d, h*, £, g]. Now let us tracehildren children backwards.
According to the definition, we first applychildren] xid); assocr; (map [children]xid) to (t, [c,d,h ™, £, g]),
yielding:
(t, ([(Nb[c,d],[c,d]), (Nef, g], [f,g])],
[c,d,h™, £, g]))
So far we are simply reproducing the intermediate valuasibee generated in the forward run. Then we apply
pull” to the second component of the pair. The list of liftsd], [£, g]] is compared against,d,h™, £, g] in
concatx’, resulting in[[c,d], [at, £, g]]. While performingmap [children]”, the pair(Ne[f,g], [at, £, g]]) is
unified intoN e [h™, £, g], due to the use afup in children. The updated source a [Nb[c,d],Ne[n™, £, g]].
Through the example, two points are worth noticing. Firgtyupdate through sequentially composed filters,
we (at least in the specification level) regenerate the malgntermediate values, and use them to generate
update intermediate values. Backward updating for contipasis defined similarly in [16, 9] by hand. The
updating behaviour in our embedding, on the other handyfollaturally from the definition of composition
and its extended semantics, although the situation is doatptl by the fact that filters return a list of results.

Secondly,concatx” made a biased choice of joining the newly added item to thlet.riHowever, it is not
always the preferred choice. Consid#ildrentxta and inputt’ = Nr [a,a], output(t’, [a, a]), and edited
output (t, [a,a™, a]). In the backward rungoncatx” would produce the intermediate res{i], [a*, a]] and
attempt to match it with the old result eft a. However, the singleton filteixt a never returns a list with two
elements.

When the second component in the sequential compositiosiisgéeton filter, we shall switch tooncatw
which, in the situation above, would produdel, [a]*, [a]]. In the implementation we can distinguish between
singleton and non-singleton filters, and perform a dynarm@ck to choose the preferred version of concatena-
tion.

5.3 Embedding Other Filter Combinators

The embedding ofmkElem sfs makes use ofoncatx and reverse application in a way similar to sequential
composition. The auxiliary functioappF applies all the filters in turn, befomncatx concatenate their results.
We then uséappF fs)” to consume the un-concatenated list of lists.

[mkElem sfs] = appFfs; (id x concatx); assocl; ((appF fs)” x dupStr s);
swap; node; wrap
where appF [] = dupNil
appF (f:fs) = dup; ([f] x appF fs); trans; (dup™ x cons)

The filter chip can be defined in a number of ways. The following definition esalse of: we applyf to
every result of node deconstructmde”, and use the auxiliary functiozap to place the result under the original
root.

[chipf] = (node > [f]);capuU
isStr; dup; (id x wrap)
where cap = (node” x id);assocr; (§ x id); trans; (node x node; wrap)

The embedding df ||| g usescatx to concatenate the resultsfoAndg. We also make use df |” to consume
the garbage output @htx. The filtercat, on the other hand, is

[f1llg] = [f];([g] x id); assocr; (id x swap; catx); assocl; ([f]” x id)
f

[atff]] =
[cat (f:fs)] = f|||catfs

The with and without combinators are defined using theoperator used in the definition of sequential
composition. The auxiliary definitiordom andnotdom checks whether the input is in the domaingof

[f with g] = [f|>dom]|g]
where domg = g; (dupNil™; dupNil U
(id x cons’; cons); dupfst; (g~ x wrap))
[f withoutg] = [f]>notdom|[g]
where notdomg = g;((id x cons’; cons); dupNil U
dupNil™; dupNil; dupfst; (id x wrap))

wheredupfst duplicates the first component of the input and is definedupfst = (dup x id); assocr; (id x
swap); assocl.
Finally, _7) _:)_is defined using union:

[p?)f:)g] = dom(p];[f] U notdomp]; [g]
where domp = p; (id x cons’; cons); p’
notdomp = p; dupNil™; dupNil; p°

norm| |
norm(at : x)

=

= norma: normx
norm(a” : Xx) = normx
norm(a:Xx) = norma:normx
norm(a, b) = (norma, normb)
norm(Nax) = N (norma) (normx)
norm(at) = norma
norm(a~) = norma
norm (sa) = a
norma = a

Figure 11. Definition of norm.

54 Get and Put

For a transformatiox, we define the GET and PUT functions to be:
gets = sd([[x]]s)
putcsv. = norm([[x]7] (s,V))

wheresnd (s, v) = v, and the functiomorm removes the tags in the tree and produces a normal form, define
the obvious way in Figure 11. We start with a source documedtuseyet, to produce an initial view. After
each editing actiorputy is called (with a cached copy of the source) to produce antaddsource. We then
call gety to produce a new view.

Let relation composition be defined % S = {(a,c)|3b- (a,b) € RA (b,c) € S}, untagged a partial
function maps the input to itself if it does not contain tagsddomR = {(a,a) | 3b - (a,b) € R}, the operator
taking the domain of a relation. An important result in [18}hat the following properties hold:

untagged; [{; [X'];norm = untagged; dom|[x]
[XT7; norm; [; [X]; norm - € [X]; norm

Further more, the inclusion in the second property becomesgaality for a certain class dfiv expressions.
From the two properties above, the GET-PUT-GET and PUT-GHT-laws follow immediately.

55 Examples

Back to the examplé = mkElem m [children | tag a, children]. For brevity, leta = Na[], b= Nb[]. Also let
a; = Naljc], by = Nb]c] to be distinguished frora andb. Lett = Nr[Nb[],Na[]] be the input. Calling
get; tyields the pairt, [Nm[a, b, a]]).

Now assume that the user delelés the viewN m [a, b, a] and we perform auts . Firstly, [f]” (t,[Nm[a,b™, a]])
results inN r [b~, a. It is correctly inferred thab in the original tree shall be deleted. Therm function then
actually removes the taggéxiand the updated sourceNsr [a)].

Applying [f]"to (t,[Nm[a,b; ™, b,a]]) yieldsN r [b; ™, b, a]. The newly insertedb;, by the biased choice of
concatx, is assumed to be the resultabfldren. Itis also the same if we inseat instead —{f|” (t, [Nm[a,a; ", b, a]])
yieldsNr [a; T, b, a]. The nextget; thus results ilNm [a;, &, a;, b, a] as the new view.

If the user inser; to the head of the list, on the other hand, the newly insegitelas to be the result of
children?taga. Indeed,[f]” (t,[Nm[a;*,a,b,a]]) yieldsN r [b,a; ™, a] because; shall be inserted in front of
a. Furthermore, elements inserted before the &instthe view must have aa label too, otherwise it could not
have been the result oig a.

If we want to allow the user to insert arbitrary elements, wedto use a different embedding taf a
whose forward semantics is the same, but allows anythingotéhgough in the backward direction. The
actual implementation ofhv allows us to add more primitives. Since compound filter coraturs preserve

bidirectionality, one just need to be sure that the new pes satisfy the healthiness conditions. This can be
seen as adding extra annotations to the transformationieiothé default behaviour.

For a bigger example, recall the transformation in Figur€he use otr = mkElem tr in mkRow specifies
that an entire row must be added at once to the table, becaumsly added element undeable must be a
result ofmkElem tr with three sub-filters. There are more than one way to buidstime table. For example,
one can scan through the address book and replacegesyn with tr, the fields withtd, by foldXml tabling
wheretabling is defined by:

tabling = tagperson?)replaceTagtr :)
(tagname?) repalceTag td :)
(tagemail?) repalceTag td :)
(tagtel?) repalceTagtd :)
keep)))
However, this transformation does not enforce enoughtstreon the input. From the transformation we cannot
infer how the source is supposed to look like. Its reversrefiore, does not yield meaningful results.

6. Reated Work

View-updating: to correctly reflect the modification on thiew back to the database [3, 6, 8, 19, 1], is an old
problem in the database community. In recent years, howtwemeed to synchronise data related by some
transform starts to be recognised by researchers fronrdiffdields. In tools for aspect-oriented programming
it is helpful to have multiple views of the same program [14].editors such as [22, 21] the user edits a
view computed from the source by a transformation. Recesgtareh on code clone [10] argues that a certain
proportion of code in a software resembles each other. Wedaaglop software maintenance tools to keep
the resembling pieces of code updated when one of them ig@lté/e are also developing file browsers using
similar technique. It is argued in [15] that sucbupled transformatioproblems are widespread and diverse.

In the context of data synchronisation, similar challenges wdentified by [9] and coined the “bidirectional
updating” problem. In [9, 7], a semantic foundation and gprming language (the “lenses”) for bidirectional
transformations are given. They form the core of the datatsymisation system Harmony [20]. Another very
much related language was given by Meertens [16] to speaifigtcaints in the design of user-interfaces. Due
to their intended applications, less efforts were put orcideing either element-wise or structural dependency
inside the view.

The original motivation of our work was to build a theoretiéaundation for presentation-oriented editors
supporting interactive development of XML documents [2, 22]. Proxima [21] is a presentation-oriented
generic editor, to which one can “plug-in” their own editfwsdifferent types of documents and representations.
However, it requires explicit specification of both forwamdd backward updating. Our goal is to specify only
the forward transform and derive the backward updatingraatwally. We choose to based our formalisation
of bidirectional updating on injective mapping. The exiengo deal with duplication and structural changes
are thus easier to cope with.

We have also developed a domain-specific XML processingulzge, calledX. The language, basically a
point-free functional language closely related to the teggs in [16] and [9], is currently used in our XML
editor [12] as the language to describe transformations. wit[12], the semantics of was given without the
use ofinv. In a preliminary work [11] in a non-refereed workshop, wafted an implementation of bidirectional
HaXML. In both cases, however, the treatments with with gapilon and alignment were not satisfactory. In
order to resolve the problem, we attempt to embed both HaXMbainto Inv. The embedding of HaXML is
recorded in this paper, while that fisris described in a paper in preparation [13].

7. Conclusions and Future Work

We have presented an embedding of HaXML ihte. With the embedding, existing HaXML transformations
gain bidirectionality — the forward transform induces akward transform which maps an edited view to an

updated source. This makes HaXML be a more powerful trame&ftion language than it was first designed
for. As far as we are aware, this is the first attempt towardsesyatically bidirectionalising unidirectional
languages.

A question is: what can we say about the updated source? Thevhad transformation does not in general
always yield a result — some editing actions may be consititlegal. The PUT-GET-PUT property merely
guarantees that if the backward transformation yields aunyce at all, it is well-behaved in the sense that an
additionalget followed by aput results in the same source, therefore no repeated updatiegéssary. Exactly
which source is returned is determined by the algebrais rfi¢helnv primitives.

Apart from that, we assume no external criteria on the updatairce. In [16], Meertens proposed the
principle of minimal change— that a source shall be chosen such that minimal change is todde view. The
main difficulty is that the minimal change principle, in gesleis not preserved by compound transformations.
In [21] it was also shown that a minimal change is not alwaysitwhe user wants. It will be an interesting
challenge to develop a formalisation of bidirectional uptathat maintains some external measurement on the
chosen source.

Ideally, given a forward transformation, we wish to get ttazkward transformation for free by the em-
bedding. As the examples show, however, transformationisewrwithout concern of backward updating in
mind tend to lack necessary information. The experienceeghfrom this case study, however, may help us
in the development of a language designed for bidirectiopalating. At present, we have &iv interpreter
implemented in Haskell, in which bofk [12, 13] and HaXML is embedded. The prototype is availabbenfr
the authors’ homepage. The HaXML embedding is in a relatipetliminary stage. The main difficulty of the
HaXML embedding is that filters return a list of results, ahd tength of the list is fixed for singleton filters.
From these experience we wish to learn what language désagures are suitable for bidirectionalisation.

Acknowledgments

The authors would like to thank the members of the PSD prejectasushi Hayashi, Dongxi Liu, Keisuke

Nakano, and Shingo Nishioka, for stimulating discussiofiso thanks to Kento Emoto for testing and
debugging the HaXML embedding, and Kazutaka Matsuda foeweug an earlier draft of this paper. Together
with Akimasa Morihata they worked on the languagend efficiently implemented a prototype XML editor
showing that the whole idea is feasible.

References

[1] S. Abiteboul. On views and XML. IfProceedings of the 18th ACM SIGPLAN-SIGACT-SIGART Symposion
Principles of Database Systemsges 1-9. ACM Press, 1999.

[2] Altova Co. Xmlspy.http://wuw.xmlspy.com/products_ide.html.

[3] F. Bancilhon and N. Spyratos. Update semantics of w@tati views. ACM Transactions on Database Systems
6(4):557-575, December 1981.

[4] C. H. Bennett. Logical reversibility of computatioiBM Journal of Research and Developmetii(6):525-532,
1973.

[5] T. Bray, J. Paoli, C. M. Sperberg-Macqueen, and E. Malektensible Markup Language (XML) 1.0 (Second
Edition), October 2000http: //www.w3.org/TR/REC-xml.

[6] U. Dayal and P. A. Bernstein. On the correct translatibnprate operations on relational view&CM Transactions
on Database Systei&3):381-416, September 1982.

[7] 3. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierced &n Schmitt. Combinators for bi-directional tree
transformations: a linguistic approach to the view updatbiem. InThe 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPLbR@Ages 233-246, Long Beach, California,
2005. ACM Press.

[8] G. Gottlob, P. Paolini, and R. Zicari. Properties and aedsemantics of consistent view8CM Transactions on
Database Systens3(4):486—-524, December 1988.

[9] M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitlanguage for bi-directional tree transformations.
Technical Report, MS-CIS-03-08, University of PennsylgaAugust 2003.

[10] V. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. ARIES:aeforing support environment based on code clone
analysis. InThe 8th IASTED International Conference on Software Engiiingy and Applications(SEA 2004)
pages 222-229, Cambrdige, USA, November 9-11, 2004. AC®APr

[11] Z. Hu, K. Emoto, S.-C. Mu, and M. Takeichi. BidirectidiEng tree tranformations. IWorkshop on New
Approaches to Software Construction (WNASC 2Q®4)maba, Tokyo, Japan, September 13-14, 2004.

[12] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor feveloping structured documents based on
bidirectional transformations. IRroceedings of ACM SIGPLAN 2004 Symposium on Partial Eviduaand
Program ManipulatiofMerona, Italy, August 2004. ACM Press.

[13] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor developing structured documents based on
bidirectional transformations, 2006. SubmittedHigher-Order and Symbolic Computation.

[14] D. Janzen and K. de Volder. Programming with crossegtéffective views. INECOOP 2004 - Object-Oriented
Programming, 18th European Conferenmember 3086 in Lecture Notes in Computer Science, pages21®¥
Springer-Verlag, June 14-18, 2004.

[15] R. Lammel. Coupled software transformations (exeshdbstract). IrFirst International Workshop on Software
Evolution Transformation2004.

[16] L. Meertens. Designing constraint maintainers foruseeractionftp: //ftp.kestrel.edu/ pub/papers/meertens/dcm.ps
1998.

[17] S.-C. Mu, Z. Hu, and M. Takeichi. An injective language feversible computation. I8eventh International
Conference on Mathematics of Program Construgtiomber 3125 in Lecture Notes in Computer Science. Sprnger
Verlag, July 2004.

[18] S.-C. Mu, Z. Hu, and M. Takeichi. An algebraic approactbi-directional updating. In W.-N. Chin, editoFhe
Second Asian Symposium on Programming Language and Systember 3302 in Lecture Notes in Computer
Science, pages 2—20. Springer-Verlag, November 4-6, 2004.

[19] A. Ohori and K. Tajima. A polymorphic calculus for vievesid object sharing. I#roceedings of the 13th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Datab&sstemspages 255-266. ACM Press, 1994.

[20] B. C. Pierce, A. Schmitt, and M. B. Greenwald. Bringingrimony to optimism: an experiment in synchronizing
heterogeneous tree-structured data. Technical ReporCMS)3-42, University of Pennsylvania, March 18, 2004.

[21] M. M. Schrage.Proxima - A presentation-oriented editor for structuredufnents PhD thesis, Utrecht University,
The Netherlands, 2004.

[22] M. Takeichi, Z. Hu, K. Kakehi, Y. Hayashi, S.-C. Mu, and Kakano. TreeCalc:towards programmable structured
documents. IMThe 20th Conference of Japan Society for Software Sciendg@chnologySeptember 2003.

[23] M. Wallace and C. Runciman. Haskell and XML: generic &dmators or type-based translation? . Rroceedings
of the 1999 ACM SIGPLAN International Conference on FuneéibProgrammingpages 148-159. ACM Press,
September 1999.

